PEMODELAN DATA TERSENSOR KANAN MENGGUNAKAN ZERO INFLATED NEGATIVE BINOMIAL DAN HURDLE NEGATIVE BINOMIAL
DOI:
https://doi.org/10.29244/ijsa.v3i2.247Keywords:
zero-inflated, hurdle, CZINB, CHNB, unhealthy-daysAbstract
Health is a very important thing for humanity. One way to look at a person's health condition is through the number of unhealthy days which can also shows the productivity of the community in a region. Modeling the number of unhealthy days which are examples of count data can be done using Poisson regression. Problems that are often faced in data counts are overdispersion and excess zero. Poisson regression cannot be applied to data that experiences both of these. Zero Inflated Negative Binomial and Hurdle Negative Binomial modeling was performed on data with 2 conditions, uncensored and censored. The explanatory variables used are gender, age, marital status, education level, home ownership status and rural-urban status. According to the results of the AIC and RMSE calculation, Zero Inflated Negative Binomial on censored data showed the best performance for estimating the number of unhealthy days.
Downloads
References
[BPS] Badan Pusat Statistik. (2017). Statistik Kesejahteraan Rakyat 2017. Jakarta (ID): Badan Pusat Statistik.
Cameron, A.C., Trivedi, P.K. (1998). Regression Analysis of Count Data. London (UK): Cambridge University Press
Coxe, S., West, S.G., Aiken, L.S. (2009). The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives. Journal of Personality Assessment. 91(2):121-136.
Das, D., Das, A. (2017). Statistics in Biology and Psychology. West Bengal (IN). Academics Publisher.
Famoye, F., Wang, W. (2003). Censored Generalized Poisson Regression Model. Computational Statistics & Data Analysis. 46:547–560.
Frone, M. (1997). Regression Models for Discrete and Limited Dependent Variables. New York (US): Research Methods Forum.
Greene, W. (2005). Censored Data and Truncated Distributions. Theoretical Econometrics. 20(1).
Hofstetter, H., Dusseldorp, E., Zeileis, A., Schuller, A.A. (2016). Modeling Caries Experience: Advantages of the Use of the Hurdle Model. Caries Res. 50:517-526.
Hu, M.C., Pavlicova, M., Nunes, E.V. (2011). Zero-Inflated and Hurdle Models of Count Data with Extra Zeros: Examples from an HIV-Risk Reduction Intervention Trial. The American Journal of Drug and Alcohol Abuse. 37(1):367-375.
Lambert, D. (1992). Zero-Inflated Poisson Regression with an Application to Defects in Manufacturing. Technometrics. 34:1-14. doi: 10.2307/1269547.
McCullagh, P., Nelder, J.A. (1989). Generalized Linear Models: Second Edition. New York (US): Chapman and Hall.
Mullahy, J. (1986). Speciï¬cation and testing of some modiï¬ed count data models. Journal of Econometrics. 33(3):341–365.
Olsson, U., Drasgow, F., Dorans, N.J. (1982). The Polyserial Correlation Coefficient. Psychometrika. 47:337. http://doi.org/10.1007/BF02294164.
Pemerintah Republik Indonesia. (2009). Undang-Undang Republik Indonesia No. 36 Tahun 2009 tentang Kesehatan. Jakarta (ID): Sekretariat Negara.
Rose, C.E., Martin, S.W., Wannemuehler, K.A., Plikaytis, B.D. (2006). On The Use of Zero-Inflated and Hurdle Models for Modeling Vaccine Adverse Event Count Data. Journal of Biopharmaceutical Statistics. 16: 463–481. doi: 10.1080/10543400600719384.
Saffari, S.E., Adnan, R. (2011). Zero-Inflated Negative Binomial Regression Model with Right Censoring Count Data. Journal of Materials Science and Engineering B. 1:551-554.
Saffari, S.E., Robiah, A., Greene, W. (2012). Hurdle Negative Binomial Regression Model with Right Censored Count Data. Journal of Statistics and Operations Research Transactions. 36(2): 181-194.
Sumarni, C. (2009). Uji kesamaan parameter model regresi zero inflated generalized poisson diantara beberapa kelompok sosial [tesis]. Surabaya (ID): Institut Teknologi Sepuluh November.
Yang, S., Harlow, L.L., Puggioni, G., Redding, C.A. (2017). A Comparison of Different Methods of Zero-Inflated Data Analysis and an Application in Health Surveys. Journal of Modern Applied Statistical Methods. 16(1):518-543. doi: 10.22237/jmasm/1493598600.