Specializations

Program Magister Statistika dan Sains Data menyediakan tiga peminatan utama —Pemodelan Statistika, Analitika Prediktif, dan Analitika Big Data— yang dirancang untuk membekali mahasiswa dengan kompetensi mendalam sesuai perkembangan kebutuhan analisis data modern.

  • Peminatan Pemodelan Statistika (SMO) berfokus pada pengembangan dan penerapan berbagai model statistika untuk menganalisis fenomena kompleks dalam data. Mahasiswa akan mempelajari teori dan praktik pemodelan seperti regresi, model linier dan non-linier, model campuran, analisis peubah ganda, serta pendekatan Bayes, sehingga mampu membangun model inferensi yang kuat dan menjelaskan hubungan antar peubah secara kuantitatif.
  • Peminatan Analitika Prediktif (PDA) membekali mahasiswa dengan pengetahuan dan keterampilan dalam membangun model prediktif berbasis data historis, dengan penekanan pada teknik machine learning, pemodelan prediktif, evaluasi performa model, serta strategi pemilihan model dan interpretasi hasil prediksi dalam konteks pengambilan keputusan. Peminatan ini sangat relevan untuk aplikasi dalam bisnis, keuangan, pemasaran, dan berbagai bidang lain yang memerlukan peramalan masa depan.
  • Peminatan Analitika Big Data (BDA) dirancang untuk menghadapi tantangan analisis data dalam skala besar dan kompleks. Mahasiswa akan mempelajari ekosistem big data, teknologi pemrosesan seperti Hadoop dan Spark, serta analisis data tidak terstruktur dan data streaming. Lulusan dari peminatan ini diharapkan mampu mengelola dan menganalisis data dalam volume besar untuk menghasilkan wawasan yang bernilai bagi pengambilan keputusan strategis.

The Master’s Program in Statistics and Data Science, IPB University offers three specializations—Statistical Modeling, Predictive Analytics, and Big Data Analytics—to equip students with in-depth competencies aligned with the evolving demands of modern data analysis.

  • The Statistical Modeling concentration (SMO) focuses on the development and application of various statistical models to analyze complex phenomena within data. Students will study both the theoretical and practical aspects of modeling, including regression, linear and non-linear models, mixed models, multivariate analysis, and Bayesian approaches, enabling them to construct robust inferential models and explain inter-variable relationships using solid quantitative methods.
  • The Predictive Analytics concentration (PDA) provides students with the knowledge and skills to build accurate predictive models based on historical data, with an emphasis on machine learning techniques, predictive modeling, model performance evaluation, model selection strategies, and interpretation of prediction results within decision-making contexts. This concentration is highly relevant for applications in business, finance, marketing, and other fields requiring future-oriented insights.
  • The Big Data Analytics concentration (BDA) is designed to address the challenges of analyzing large-scale and complex datasets. Students will be introduced to the big data ecosystem, including data storage and processing technologies such as Hadoop and Spark, as well as techniques for analyzing unstructured data and data streams. Graduates of this concentration are expected to manage and analyze massive data volumes to generate valuable insights for strategic decision-making.

Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • SKU
  • Rating
  • Price
  • Stock
  • Availability
  • Add to cart
  • Description
  • Content
  • Weight
  • Dimensions
  • Additional information
Click outside to hide the comparison bar
Compare