Perbandingan Metode Hot-deck, Regression dan K-Nearest Neighbor Imputation dalam Pendugaan Data Hilang pada Dapodik Tahun 2020

Authors

  • Inayatul Izzati Diana Yusuf Department of Statistics, IPB University, Indonesia
  • Budi Susetyo Department of Statistics, IPB University, Indonesia
  • La Ode Abdul Rahman Department of Statistics, IPB University, Indonesia

DOI:

https://doi.org/10.29244/xplore.v12i1.1056

Keywords:

dapodik, hot-deck imputation, KNNI, missing value, regression imputation

Abstract

Data Pokok Pendidikan (Dapodik) is a nation-wide data collection system that contains data on education units. Missing value in Dapodik cause the loss of important information. To solve this problem can use imputation. Imputation is a procedure to predict the missing value with a certain method. This study aims to compare three imputation methods which are Hot-deck imputation, Regression Imputation and K-Nearest Neighbor imputation (KNNI). Simulation for generating missing value was carried out by dividing the percentage of  2%, 3%, 4% and 5%, then imputed with the three methods. The best model is determined based on the lowest value of RMSE and MAPE. The best imputation method based on the lowest RMSE and MAPE values is a regression imputation

Downloads

Published

2023-01-15

How to Cite

Diana Yusuf, I. I., Susetyo, B., & Rahman, L. O. A. (2023). Perbandingan Metode Hot-deck, Regression dan K-Nearest Neighbor Imputation dalam Pendugaan Data Hilang pada Dapodik Tahun 2020. Xplore: Journal of Statistics, 12(1), 22–35. https://doi.org/10.29244/xplore.v12i1.1056

Most read articles by the same author(s)