Identifikasi Peubah yang Berpengaruh terhadap Ketidaklulusan Mahasiswa Program Sarjana BUD IPB dengan Regresi Logistik Biner
DOI:
https://doi.org/10.29244/xplore.v12i1.1055Keywords:
binary logistic regression, BUD IPB, SMOTEAbstract
One of the entrances available at the Bogor Agricultural University (IPB) is the Regional Representatives Scholarship (BUD). Not all BUD IPB students were able to complete their studies because they dropped out (DO) or resigned. One of the efforts that IPB can do to reduce the dropout rate for BUD IPB students is to find out the variables that affect the failure of BUD IPB students. The variables that influence the failure of BUD IPB students are analyzed by binary logistic regression. There is an imbalance of data classes in the response variables so that the method that can be used to overcome this is the Synthetic Minority Over-Sampling Technique (SMOTE). The classification model with SMOTE resulted in a higher average sensitivity than the model without SMOTE from 10,66% to 61,91%. This confirms that the model with SMOTE is better at predicting the minority class (BUD IPB students who do not pass). The variables that affect the failure of BUD IPB students are gender, school status of origin, study program groups, the presence or absence of Pre-University Programs (PPU), type of sponsor, average report cards, and GPA in the Joint Preparation Stage (TPB) or General Competency Education Program (PPKU).