PENGGUNAAN PROPENSITY SCORE STRATIFICATION-SUPPORT VECTOR MACHINE UNTUK MENGESTIMASI EFEK PERLAKUKAN AKTIVITAS OLAHRAGA PADA PENDERITA DIABETES MELITUS

Authors

  • Ernawati Department of Sufism and Psychotherapy, UIN Walisongo Semarang, Indonesia
  • Bambang Widjanarko Otok Department of Statistics, ITS Surabaya, Indonesia
  • Sutikno Department of Statistics, ITS Surabaya, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v4i3.653

Keywords:

accuration, diabetes mellitus, PBR, propensity score stratification, SVM

Abstract

Randomized Controlled Trial (RCT) is not possible to do in observational studies, mainly in health cases, because it is directly related to human life. Actually, good randomization is needed to make the treatment and control groups have no large differences in the observed variables, so it results from unbiased treatment One alternative method that is increasingly used in statistical analysis in the field of health is the Propensity Score (PS). If the propensity score had estimated using the SVM method and divided into groups of strata that have a similar propensity score, it is known as the Propensity Score Stratification (PSS-SVM). The purpose of the PSS-SVM is to balance the observed variables between the treatment group and the control group by dividing them into several strata groups so that a balanced trend is obtained or the propensity score is called balance. This eliminates the influence of the confounding variables and unbalance of the treatment and control groups and obtain an unbiased estimation of the treatment effect. In this Research, the PSS-Method applied in case of disease complication in patients with Diabetes Mellitus Type 2 at the Regional Public Hospital of Pasuruan with respondents who counted 96 patients. The purpose of using PSS-SVM, in this case, is to reduce the confounding effects (sports activity) that influence disease complications. In strata of 4 reduce the largest bias with the percent bias reduction (PBR) is 86.39% with the smallest standard error is 0.103.

Downloads

Download data is not yet available.

References

Afriza, A. (2015). Pengaruh Senam Diabetes Terhadap Kadar Glukosa Darah pada Penderita Diabetes Mellitus di Puskesmas Lapai Kecamatan Nanggalo Kota Padang. Jurnal Ilmu Keolahragaan, 1(1): 1-19.

Agresti, A. (2003). Categorical data analysis (Second). Canada: John Wiley & Sons.

D’Agostino, R. B. J. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine, 17(19): 2265–2281. https://doi.org/10.1002/(sici)1097-0258(19981015)17:19<2265::aid-sim918>3.0.co;2-b

Gungor, N., Hannon, T., Libman, I., Bacha, F., & Arslanian, S. (2005). Type 2 diabetes mellitus in youth: the complete picture to date. Pediatric Clinics of North America, 52(6): 1579–1609. https://doi.org/10.1016/j.pcl.2005.07.009

Härdle, W. K., Prastyo, D. D., & Hafner, C. M. (2014). Support vector machines with evolutionary model selection for default prediction. In The oxford handbook of applied nonparametric and semiparametric econometrics and statistics (pp. 346–373). https://doi.org/10.1093/oxfordhb/9780199857944.013.011

[KEMENKES RI] Kementerian Kesehatan RI. (2013). Infodatin Pusat Data dan Informasi Kemenkes RI: Situasi dan Analisis Diabetes. Jakarta (ID): Kementerian Kesehatan RI.

Li, M. (2013). Using the propensity score method to estimate causal effects: A review and practical guide. Organizational Research Methods, 16(2): 188–226.

McCandless, L. C., Gustafson, P., & Austin, P. C. (2009). Bayesian propensity score analysis for observational data. Statistics in Medicine, 28(1): 94–112.

Merdeka, M. B. A. (2017). Propensity Score Stratification Menggunakan Regresi Logistik Pada Kasus Infeksi Saluran Pernapasan Akut Terhadap Balita Di Puskesmas Pasuruan Jawa Timur. Surabaya (ID): Institut Teknologi Sepuluh November.

Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4): 603–614.

Misnadiarly. (2006). Diabetes mellitus gangren, ulcer, infeksi : mengenali gejala, menanggulangi, mencegah komplikasi. Jakarta (ID): Pustaka Populer Obor.

Pan, W., & Bai, H. (2015). Propensity score analysis: Fundamentals and developments. Guilford Publications.

Provost, F. (1998). Glossary of Terms Special Issue on Applications of Machine Learning and the Knowledge Discovery Process. Machine Learning, 30: 271–274.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1): 41–55.

Sharoh, S. M., & Salmiyati, S. (2017). Pengaruh Senam Diabetes terhadap Kadar Gula Darah pada Penderita Diabetes Mellitus Tipe II di Wilayah Kerja Puskesmas Gamping 1 Sleman Yogyakarta. Universitas.

Sinaga, J., & Hondro, E. (2011). Pengaruh senam diabetes mellitus terhadap kadar glukosa darah pada penderita diabetes mellitus tipe 2 di wilayah kerja puskesmas darusalam medan. Jurnal Mutiara Ners, 1(7): 1-7.

Sustrani, L., Alam, S., & Hadibroto, I. (2006). Diabetes: Informasi Lengkap untuk Penderita dan Keluarganya. Jakarta (ID): Gramedia Pustaka.

Tu, W., & Zhou, X.-H. (2002). A Bootstrap Confidence Interval Procedure for the Treatment Effect Using Propensity Score Subclassification. Health Services and Outcomes Research Methodology, 3(2): 135–147. https://doi.org/10.1023/A:1024212107921

Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. Journal of Clinical Epidemiology, 63(8): 826–833. https://doi.org/10.1016/j.jclinepi.2009.11.020

Winkelmayer, W. C., & Kurth, T. (2004). Propensity scores: help or hype? Nephrology Dialysis Transplantation, 19(7): 1671–1673. https://doi.org/10.1093/ndt/gfh104

[WHO] World Health Organization. (2015). Jakarta (ID): WHO Statistical Profile.

Yu, H., Hong, S., Yang, X., Ni, J., Dan, Y., & Qin, B. (2013). Recognition of Multiple Imbalanced Cancer Types Based on DNA Microarray Data Using Ensemble Classifiers. BioMed Research International, 2013: 1-13. https://doi.org/10.1155/ 2013/239628

Zhao, C. Y., Zhang, H. X., Zhang, X. Y., Liu, M. C., Hu, Z. D., & Fan, B. T. (2006). Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology, 217(2): 105–119. https://doi.org/10.1016/j.tox.2005.08.019

Downloads

Published

2020-12-20

How to Cite

Ernawati, E., Otok, B. W., & Sutikno, S. (2020). PENGGUNAAN PROPENSITY SCORE STRATIFICATION-SUPPORT VECTOR MACHINE UNTUK MENGESTIMASI EFEK PERLAKUKAN AKTIVITAS OLAHRAGA PADA PENDERITA DIABETES MELITUS. Indonesian Journal of Statistics and Its Applications, 4(3), 510–527. https://doi.org/10.29244/ijsa.v4i3.653

Issue

Section

Articles