IMPROVISASI MODEL ARIMAX-ANFIS DENGAN VARIASI KALENDER UNTUK PREDIKSI TOTAL TRANSAKSI NON-TUNAI

Authors

  • Muhammad Luthfi Setiarno Putera Institut Agama Islam Negeri Palangka Raya, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v4i2.603

Keywords:

ARIMAX-ANFIS, calendar variation, hybrid model, non-cash transaction

Abstract

Developed information technology boosts interest to use non-cash payment media in many areas. Following the high usage of a non-cash scheme in many payment transactions recently, the objective of this work is two-fold that is to predict the total of a non-cash transaction by using various time-series models and to compare the forecasting accuracy of those models. As a country with a mostly dense Moslem population, plenty of economical activities are arguably influenced by the Islamic calendar effect. Therefore the models being compared are ARIMA, ARIMA with Exogenous (ARIMAX), and a hybrid between ARIMAX and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). By taking such calendar variation into account, the result shows that ARIMAX-ANFIS is the best method in predicting non-cash transactions since it produces lower MAPE. It is indicated that non-cash transaction increases significantly ahead of Ied Fitr occurrence and hits the peak in December. It demonstrates that the hybrid model can improve the accuracy performance of prediction.

Downloads

Download data is not yet available.

References

Ahmad, I. S., Setiawan, Suhartono, & Masun, N. H. (2015). Forecasting of monthly inflow and outflow currency using time series regression and ARIMAX: The Idul Fitri effect. AIP Conference Proceedings, 1691(1), 050002. AIP Publishing LLC.

Aliha, P. M., Sarmidi, T., & Said, F. F. (2019). The Effect of Financial Innovation on the Forecasting Performance of Money Demand in Japan in the Context of ARIMA Model during 1990-2015. International Journal of Business and Economy, 1(2): 78–94.

Alizadeh, M., Jolai, F., Aminnayeri, M., & Rada, R. (2012). Comparison of different input selection algorithms in neuro-fuzzy modeling. Expert Systems with Applications, 39(1): 1536–1544.

Al-Najaf, F. A. S. I., Salehi, M., & Al-Maliki, H. S. N. (2018). The effect of Islamic sacred months on stock prices in Iran and Iraq Stock Exchanges. ISRA International Journal of Islamic Finance, 10(1): 111–119.

Barak, S., & Sadegh, S. S. (2016). Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm. International Journal of Electrical Power & Energy Systems, 82: 92–104.

[BI] Bank Indonesia. (2018). Kajian Stabilitas Keuangan No. 31. Jakarta (ID): Bank Indonesia.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis, Forecasting and Control 4th Edition. New Jersey (US): John Wiley & Sons.

Boyacioglu, M. A., & Avci, D. (2010). An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Systems with Applications, 37(12): 7908–7912.

Cui, H., & Peng, X. (2015). Short-term city electric load forecasting with considering temperature effects: an improved ARIMAX model. Mathematical Problems in Engineering, 2015(589734): 1–10.

Diarsih, I., Rusgiyono, A., & others. (2019). Modeling of red onion production in Central Java using hybrid ARIMA-ANFIS. Journal of Physics: Conference Series, 1217(1), 012080. IOP Publishing.

Faulina, R., & Suhartono, S. (2013). Hybrid ARIMA-ANFIS for Rainfall Prediction in Indonesia. International Journal of Science and Research (IJSR), 2(2): 159–162.

Kristiana, A., Wilandari, Y., & Prahutama, A. (2015). Peramalan Beban Puncak Pemakaian Listrik Di Area Semarang Dengan Metode Hybrid Arima (Autoregressive Integrated Moving Average)-anfis (Adaptive Neuro Fuzzy Inference System)(Studi Kasus Di PT Pln (Persero) Distribusi Jawa Tengah Dan DIY). Jurnal Gaussian, 4(4): 714–723.

Lin, H.-L., Liu, L.-M., Tseng, Y.-H., & Su, Y.-W. (2011). Taiwan’s international tourism: a time series analysis with calendar effects and joint outlier adjustments. International Journal of Tourism Research, 13(1): 1–16.

Makridou, G., Atsalakis, G. S., Zopounidis, C., & Andriosopoulos, K. (2013). Gold price forecasting with a neuro-fuzzy-based inference system. International Journal of Financial Engineering and Risk Management 2, 1(1): 35–54.

Mariz, F. A. A. R. de. (2017). Financial inclusion and electronic payments: explaining electronic payments in Brazil with principal components analysis and Sarimax models (PhD Thesis). São Paulo (BR): Universidade de São Paulo.

Tarno, Subanar, Rosadi, D., & Suhartono. (2013). Analysis of Financial Time Series Data Using Adaptive Neuro Fuzzy Inference System (ANFIS). International Journal of Computer Science Issues (IJCSI), 10(2): 491–496.

Tarno, T., Rusgiyono, A., Warsito, B., Sudarno, S., & Ispriyanti, D. (2018). PEMODELAN HYBRID ARIMA-ANFIS UNTUK DATA PRODUKSI TANAMAN HORTIKULTURA DI JAWA TENGAH. MEDIA STATISTIKA, 11(1): 65–78.

Wulandari, D., Soseco, T., Narmaditya, B. S., & others. (2016). Analysis of the use of electronic money in efforts to support the less cash society. International Finance and Banking, 3(1): 1–10.

Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2): 501–514.

Downloads

Published

2020-07-31

How to Cite

Putera, M. L. S. (2020). IMPROVISASI MODEL ARIMAX-ANFIS DENGAN VARIASI KALENDER UNTUK PREDIKSI TOTAL TRANSAKSI NON-TUNAI. Indonesian Journal of Statistics and Its Applications, 4(2), 296–310. https://doi.org/10.29244/ijsa.v4i2.603

Issue

Section

Articles