STUDY ON EMD METHOD FOR PREDICTING THE PRICE OF CURLY RED CHILI IN INDONESIA
DOI:
https://doi.org/10.29244/ijsa.v4i2.600Keywords:
ARIMA, EEMD, modified EEMD, Trend PolinomialAbstract
The fluctuations of curly red chili price affect the inflation rate in Indonesia. So that, the basic characteristics of price movement and correctly prediction for curly red chili price become concern in various studies. Empirical Mode Decomposition (EMD) method helps to examine behavioral characteristics of curly red chili prices in Indonesia easily. Ensemble EMD (EEMD) and modified EEMD are the decomposition method of time series which is development of EMD method. The decomposed data with EMD methods can also used for price forecast. The forecasting with ARIMA and trend polynomial performed to assess the effect of decomposition with EMD methods for forecast stability of curly red chili price in Indonesia under various conditions. The results show the most influence factor for price fluctuation of curly red chili in Indonesia is season and growing season. In this case, the ability of a decomposition method to produce the actual components that describe the pattern of data signals affect the accuracy of the predicted value obtained using the model. The predicted value using the decomposed data by modified EEMD always better than EEMD on the overall condition.
Downloads
References
Bakri, R., Data, U., & Astuti, N. P. (2019). Aplikasi Auto Sales Forecasting Berbasis Computational Intelligence Website untuk Mengoptimalisasi Manajemen Strategi Pemasaran Produk. JSINBIS (Jurnal Sistem Informasi Bisnis), 9(2): 244–251.
Fransiska, H., Wijayanto, H., & Sartono, B. (2014). Ensemble Decomposition Method for Predicting the Price of Rice in Jakarta. IOSR Journal of Mathematics, 10(4): 92–97.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995.
Kuo, C.-Y., Wei, S.-K., & Tsai, P.-W. (2013). Ensemble empirical mode decomposition with supervised cluster analysis. Advances in Adaptive Data Analysis, 5(01): 1–19.
Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1999). Metode dan aplikasi peramalan. Jakarta (ID): Erlangga.
Subagyo, P. (2000). Forecasting: konsep dan aplikasi. Yogyakarta(ID): BPFE UGM.
Wijayanto, H., Sartono, B., Fitrianto, A., & Nursyifa, C. (2015). Improving the Components Independence of Decomposition in Time Series Data. Far East Journal of Mathematical Sciences, 96(3): 303–314.
Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01): 1–41.
Zhang, J., Yan, R., Gao, R. X., & Feng, Z. (2010). Performance enhancement of ensemble empirical mode decomposition. Mechanical Systems and Signal Processing, 24(7): 2104–2123.
Zhang, X., Lai, K. K., & Wang, S.-Y. (2008). A new approach for crude oil price analysis based on empirical mode decomposition. Energy Economics, 30(3): 905–918.