ROBUST SPATIAL REGRESSION MODEL ON ORIGINAL LOCAL GOVERNMENT REVENUE IN JAVA 2017

Authors

  • Winda Chairani Mastuti Department of Statistics, IPB University, Indonesia
  • Anik Djuraidah Department of Statistics, IPB University, Indonesia
  • Erfiani Erfiani Department of Statistics, IPB University, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v4i1.573

Keywords:

mean shift, OLGR, robust spatial regression, SAR, score test

Abstract

Spatial regression measures the relationship between response and explanatory variables in the regression model considering spatial effects. Detecting and accommodating outliers is an important step in the regression analysis. Several methods can detect outliers in spatial regression. One of these methods is generating a score test statistics to identify outliers in the spatial autoregressive (SAR) model. This research applies a robust spatial autoregressive (RSAR) model with S- estimator to the Original Local Government Revenue (OLGR) data. The RSAR model with the 4-nearest neighbor weighting matrix is the best model produced in this study.  The coefficient of the RSAR model gives a more relevant result. Median absolute deviation (MdAD) and median absolute percentage error (MdAPE) values ​​in the RSAR model with 4-nearest neighbor give smaller results than the SAR model.

Downloads

Download data is not yet available.

References

Anselin, L. (1988). Spatial econometrics: methods and models. Dordrecht (NL): Kluwer Academic Publisher.

Choi, S.-W. (2009). The effect of outliers on regression analysis: regime type and foreign direct investment. Quarterly Journal of Political Science, 4(2): 153–165.

Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (Vol. 479). New York (US): Springer.

Haining, R. (1993). Spatial data analysis in the social and environmental sciences. Cambridge University Press.

Harini, S., Sheppy, S., Sari, M. S. N., & Purhadi. (2019). Parameter estimate for spatial lag regression model with outlier. International Journal of Engineering & Technology, 8(1.9): 114–116.

Jin, L., Dai, X., Shi, A., & Shi, L. (2016). Detection of outliers in mixed regressive-spatial autoregressive models. Communications in Statistics-Theory and Methods, 45(17): 5179–5192.

Purwaningsih, E. (2011). Analisis faktor yang mempengaruhi pendapatan asli daerah di Kabupaten Sragen 1999-2008 [tesis]. Surakarta(ID): Universitas Sebelas Maret.

Rousseeuw, P., & Yohai, V. (1984). Robust regression by means of S-estimators. In Robust and nonlinear time series analysis (pp. 256–272). https://doi.org/10.1007/978-1-4615-7821-5-15.

Salibian-Barrera, M., & Yohai, V. J. (2006). A fast algorithm for S-regression estimates. Journal of Computational and Graphical Statistics, 15(2): 414–427.

Shekhar, S., Lu, C.-T., & Zhang, P. (2003). A unified approach to detecting spatial outliers. GeoInformatica, 7(2): 139–166.

Susanti, Y., Pratiwi, H., & others. (2014). M estimation, S estimation, and MM estimation in robust regression. International Journal of Pure and Applied Mathematics, 91(3): 349–360.

Tharmaratnam, K., & Claeskens, G. (2013). A comparison of robust versions of the AIC based on M-, S-and MM-estimators. Statistics, 47(1): 216–235.

Downloads

Published

2020-02-28

How to Cite

Mastuti, W. C., Djuraidah, A., & Erfiani, E. (2020). ROBUST SPATIAL REGRESSION MODEL ON ORIGINAL LOCAL GOVERNMENT REVENUE IN JAVA 2017. Indonesian Journal of Statistics and Its Applications, 4(1), 68–79. https://doi.org/10.29244/ijsa.v4i1.573

Issue

Section

Articles

Most read articles by the same author(s)