ROBUST SPATIAL REGRESSION MODEL ON ORIGINAL LOCAL GOVERNMENT REVENUE IN JAVA 2017
DOI:
https://doi.org/10.29244/ijsa.v4i1.573Keywords:
mean shift, OLGR, robust spatial regression, SAR, score testAbstract
Spatial regression measures the relationship between response and explanatory variables in the regression model considering spatial effects. Detecting and accommodating outliers is an important step in the regression analysis. Several methods can detect outliers in spatial regression. One of these methods is generating a score test statistics to identify outliers in the spatial autoregressive (SAR) model. This research applies a robust spatial autoregressive (RSAR) model with S- estimator to the Original Local Government Revenue (OLGR) data. The RSAR model with the 4-nearest neighbor weighting matrix is the best model produced in this study. The coefficient of the RSAR model gives a more relevant result. Median absolute deviation (MdAD) and median absolute percentage error (MdAPE) values ​​in the RSAR model with 4-nearest neighbor give smaller results than the SAR model.
Downloads
References
Anselin, L. (1988). Spatial econometrics: methods and models. Dordrecht (NL): Kluwer Academic Publisher.
Choi, S.-W. (2009). The effect of outliers on regression analysis: regime type and foreign direct investment. Quarterly Journal of Political Science, 4(2): 153–165.
Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (Vol. 479). New York (US): Springer.
Haining, R. (1993). Spatial data analysis in the social and environmental sciences. Cambridge University Press.
Harini, S., Sheppy, S., Sari, M. S. N., & Purhadi. (2019). Parameter estimate for spatial lag regression model with outlier. International Journal of Engineering & Technology, 8(1.9): 114–116.
Jin, L., Dai, X., Shi, A., & Shi, L. (2016). Detection of outliers in mixed regressive-spatial autoregressive models. Communications in Statistics-Theory and Methods, 45(17): 5179–5192.
Purwaningsih, E. (2011). Analisis faktor yang mempengaruhi pendapatan asli daerah di Kabupaten Sragen 1999-2008 [tesis]. Surakarta(ID): Universitas Sebelas Maret.
Rousseeuw, P., & Yohai, V. (1984). Robust regression by means of S-estimators. In Robust and nonlinear time series analysis (pp. 256–272). https://doi.org/10.1007/978-1-4615-7821-5-15.
Salibian-Barrera, M., & Yohai, V. J. (2006). A fast algorithm for S-regression estimates. Journal of Computational and Graphical Statistics, 15(2): 414–427.
Shekhar, S., Lu, C.-T., & Zhang, P. (2003). A unified approach to detecting spatial outliers. GeoInformatica, 7(2): 139–166.
Susanti, Y., Pratiwi, H., & others. (2014). M estimation, S estimation, and MM estimation in robust regression. International Journal of Pure and Applied Mathematics, 91(3): 349–360.
Tharmaratnam, K., & Claeskens, G. (2013). A comparison of robust versions of the AIC based on M-, S-and MM-estimators. Statistics, 47(1): 216–235.