PEMODELAN PENGARUH IKLIM TERHADAP ANGKA KEJADIAN DEMAM BERDARAH DI KOTA AMBON MENGGUNAKAN METODE REGRESI GENERALIZED POISSON

Authors

  • Ferry Kondo Lembang Jurusan Matematika FMIPA, Universitas Pattimura, Indonesia
  • Eysye Alchi Nara Jurusan Matematika FMIPA, Universitas Pattimura, Indonesia
  • Francis Yunito Rumlawang Jurusan Matematika FMIPA, Universitas Pattimura, Indonesia
  • Mozart Winston Talakua Jurusan Matematika FMIPA, Universitas Pattimura, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v3i3.474

Keywords:

climate factor, DHF, generalized poisson regression

Abstract

Dengue Hemorrhagic Fever (DHF) is one of the dreaded diseases of the transition season. DHF is a disease found in tropical and subtropical regions that caused by Dengue virus which is transmitted through Aedes mosquitoes. According to the World Health Organization (WHO) data, it is stated that Indonesia is the country with the highest dengue fever case in Southeast Asia. The incidence of dengue fever in Indonesia tends to increase in the middle of the rainy season, and one of the regions in Indonesia with the high level of rainfall intensity is Ambon City. DHF cases in Ambon city increase from year to year due to the last five years the intensity of rainfall is very high. Therefore, this study aims to identify climate factors that affect the incidence of DHF in Ambon City by using Generalized Poisson Regression method. Generalized Poisson Regression is appropriately considered to analyze the causing factors DHF incidence because the rating case of DHF is usually the count data that following the Poisson distribution. The results showed that the smallest AIC value for the Generalized Poisson Regression model was 75.842 with significant variables is DHF in the city of Ambon were one month earlier, air humidity, rainfall, and air humidity two months earlier.

Downloads

Download data is not yet available.

References

Darnah. (2011). Mengatasi overdispersi pada model regresi poisson dengan generalized poisson regression. Jurnal Eksponensial, 2(2): 5–10.

Hidayati, R. (2008). Model peringatan dini penyakit demam berdarah dengan informasi unsur iklim (Tesis). IPB University, Bogor (ID).

Irwan, & Sari, D. P. (2013). Pemodelan regresi poisson dan binomial negatif pada kasus kecelakaan kendaraan bermotor di lalu lintas Sumatera Barat. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika. Presented at the Yogyakarta (ID).

Melliana, A., Setyorini, Y., & Eko, H. (2013). The comparison of generalized Poisson regression and negative binomial regression methods in overcoming overdispersion. International Journal of Scientific & Technology, 8(2): 255–258.

Priyatno, D. (2013). Analisis korelasi, regresi dan multivariate dengan SPSS. Yogyakarta (ID): Gava Media.

Rahayu, D., Winahju, W. S., & Mukarromah, A. (2012). Pemodelan pengaruh iklim terhadap angka kejadian demam berdarah dengue di Surabaya. Jurnal Sains Dan Seni ITS, 1(1): D69–D74.

Ruliana, Hendikawati, P., & Agoestanto, A. (2016). Pemodelan Generalized Poisson Regression (GPR) Untuk Mengatasi Pelanggaran Equidispersi Pada Regresi Poisson Kasus Campak di Kota Semarang Tahun 2013. Unnes Journal of Mathematics, 5(1): 39–46.

Downloads

Published

2019-10-31

How to Cite

Kondo Lembang, F., Nara, E. A., Rumlawang, F. Y., & Talakua, M. W. (2019). PEMODELAN PENGARUH IKLIM TERHADAP ANGKA KEJADIAN DEMAM BERDARAH DI KOTA AMBON MENGGUNAKAN METODE REGRESI GENERALIZED POISSON. Indonesian Journal of Statistics and Its Applications, 3(3), 341–351. https://doi.org/10.29244/ijsa.v3i3.474

Issue

Section

Articles

Most read articles by the same author(s)