PEMODELAN STATISTICAL DOWNSCALING DENGAN PEUBAH DUMMY BERDASARKAN TEKNIK CLUSTER HIERARKI DAN NON- HIERARKI UNTUK PENDUGAAN CURAH HUJAN
DOI:
https://doi.org/10.29244/ijsa.v3i3.471Keywords:
cluster hierarchy techniques, dummy variables, non-hierarchical cluster techniques, principal component regression, statistical downscalingAbstract
Statistical downscaling (SD) is a statistical technique used to predict local scale rainfall based on global atmospheric circulation. The global scale climate variable used is precipitation from GCM (Global Circulation Model). However, the precipitation data of GCM outputs have a large dimension, giving rise to multicollinearity in the data. This problem is handled by the Principal Component Regression (PCR) method. In addition, the SD models have heterogeneous error variances. The dummy variable is added to the PCR models to solve the problem. Hierarchical (k-means) and non-hierarchical cluster techniques (average linkage, median linkage, and ward linkage) are used in modeling to determine rainfall data groups. Furthermore, the group formed is the basis of the formation of dummy variables. This study aims to estimate local rainfall data in Pangkep district as a salt-producing area in South Sulawesi. There are 4 dummy variables based on the 5 groups formed. Dummy variables are able to improve predictions from the PCR models. R2 values of the PCR-dummy models (ranging from 89.89% to 95.58%) are relatively higher than the PCR models (ranging from 55.87% to 57.61%). This result is also consistent with the model validation stage. The PCR-dummy models based on non-hierarchical cluster techniques (k-means) are better than the PCR-dummy models based on cluster hierarchy techniques. In general, the best model is the PCR-dummy model of the non-hierarchical cluster technique (k-means ) and involves 4 main components.
Downloads
References
Busuioc, A., Chen, D., & Hellström, C. (2001). Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(5): 557–578.
Estiningtyas, W., & Wigena, A. H. (2011). Teknik statistical downscaling dengan regresi komponen utama dan regresi kuadrat terkecil parsial untuk prediksi curah hujan pada kondisi el nino, la nina, dan normal. Jurnal Meteorologi dan Geofisika, 12(1): 65–72.
Fernandez, E. (2005). On the influence of predictors area in statistical downscaling of daily parameters. Norwegia Meteorological Institute, 9: 1–21.
Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (Vol. 5). New Jersey (US): Prentice hall Upper Saddle River.
Jollife, I. T. (2002). Principal component analysis (2nd ed.). New York (US): Springer-Verlag.
Listyarini, T. (2017). Pemerintah jadikan sulsel pusat produksi garam.
Retrieved March 4, 2019, from beritasatu.com website: https://www.beritasatu.com/agribisnis/446948-pemerintah-jadikan-sulsel-pusat-produksi-garam.html
Mattjik, A. A., & Sumertajaya, I. M. (2011). Sidik peubah ganda dengan menggunakan SAS. Bogor (ID): IPB Press.
Montgomery, D. C., & Peck, E. A. (1992). Introduction to linear regression analysis (2nd ed.). New York (US): John Wiley & Sons.
Sahriman, S. (2014). Model statistical downscaling dengan time lag data global circulation model untuk peramalan curah hujan (Tesis). IPB University, Bogor (ID).
Sahriman, S., & Kalondeng, A. (2017). Pemodelan statistical downscaling dengan peubah boneka berdasarkan teknik cluster untuk peramalan curah hujan (Laporan penelitian). Universitas Hasanuddin, Makassar (ID).
Sipayung, S. B. (2005). Dampak variabilitas iklim terhadap produksi pangan di Sumatera. Jurnal Sains Dirgantara, 2(2): 111–126.
Wigena, A. H. (2006). Pemodelan statistical downscaling dengan regresi projection pursuit untuk peramalan curah hujan bulanan (Disertasi). IPB University, Bogor (ID).
Wigena, A. H., Djuraidah, A., & Sahriman, S. (2015). Statistical downscaling dengan pergeseran waktu berdasarkan korelasi silang. Jurnal Meteorologi Dan Geofisika, 16(1): 19–24.