PEMODELAN CLUSTERWISE REGRESSION PADA STATISTICAL DOWNSCALING UNTUK PENDUGAAN CURAH HUJAN BULANAN
DOI:
https://doi.org/10.29244/ijsa.v3i3.310Keywords:
cluster-weighted method, clusterwise regression, finite mixture method, statistical downscalingAbstract
Statistical downscaling (SDS) is one of the developing models for rainfall estimation. The SDS model is a regression model used to analyze the relation of global (GCM output) and local data (rainfall). Rainfall has large variance so that clustering is needed to minimize the variance. One of the analytical methods that can be used in clustering rainfall estimation is cluster wise regression. There are three Methods for Clusterwise regression namely Linear Regresion, Finite Mixture Method (FMM) and Cluster-Weighted Method (CWM). This study used GCM outputs data namely CFRSv2 as a covariate. The response variable is rainfall data in four stations such as Bandung, Bogor, Citeko and Jatiwangi from BMKG. The purpose of this study is to increase the accuracy of rainfall estimation using the three methods and compare the clusterwise regression with PCR and PLS models. Based on the value of RMSEP, the clusterwise regression with FMM was the best method to estimate rainfall in four stations.
Downloads
References
Ali, I., Djuraidah, A., & Soleh, A. M. (2017). Gamma response regression with percentile lasso and ridge to estimate extreme rainfall. Proceeding of ICSME: Contribution of Mathematics and Science Research for Sustainable Life in Facing Global Challenge, 3, M-44-M–49. Semarang (ID): Faculty of Mathematics and Natural Sciences, Semarang State University, Indonesia.
DeSarbo, W. S., & Cron, W. L. (1988). A maximum likelihood methodology for clusterwise linear regression. Journal of Classification, 5(2): 249–282.
Grun, B., & Leisch, F. (2007). FlexMix: An R package for finite mixture modelling. R News, 7(1): 8–13.
Irawan, B. (2016). Fenomena anomali iklim El Niño dan La Niña: Kecenderungan jangka panjang dan pengaruhnya terhadap produksi pangan. Forum Penelitian Agro Ekonomi, 24(1): 28–45.
Irvan, M., Wigena, A. H., & Djuraidah, A. (2017). Linear regression with percentile lasso and ridge to predict rainfall. Proceeding of ICSME: Contribution of Mathematics and Science Research for Sustainable Life in Facing Global Challenge, 3, M-56-M–62. Semarang (ID): Faculty of Mathematics and Natural Sciences, Semarang State University, Indonesia.
Khairunnisa, K., Pitri, R., Butar-Butar, V. P., & Soleh, A. M. (2019). Pemanfaatan CFSRv2 untuk statistical downscaling menggunakan principal component regression dan partial least square. Xplore: Journal of Statistics, 8(1): 37-44.
Lau, K., Leung, P., & Tse, K. (1999). A mathematical programming approach to clusterwise regression model and its extensions. European Journal of Operational Research, 116(3): 640–652.
Mattjik, A. A., & Sumertajaya, I. M. (2011). Sidik peubah ganda dengan menggunakan SAS. Bogor (ID): IPB Press.
Mazza, A., Punzo, A., & Ingrassia, S. (2018). FlexCWM: a flexible framework for cluster-weighted models. J Stat Softw, 86(2): 1–30.
Nadya, A. R. (2018). Pemodelan Statistical Downscaling untuk Menduga Curah Hujan degan Regresi Linear Gerombol dan Pemodelan Dua Tahap [Tesis]. Bogor (ID): IPB University.
Permatasari, S. M., Djuraidah, A., & Soleh, A. M. (2017). Statistical downscaling with gamma distribution and elastic net regularization (case study: monthly rainfall 1981-2013 at Indramayu). Proceeding The International Conference on Applied Statistics| Departemen Statistika FMIPA Universitas Padjadjaran, 2, 2. Bandung (ID): Departemen Statistika, FMIPA, Universitas Padjadjaran.
Pitri, R., Soleh, A. M., & Djuraidah, A. (2018). Statistical downscaling modeling through k-means clustering. International Journal of Scientific Research in Science, Engineering and Technology, 4(9): 220–227.
Soleh, A. M., Wigena, A. H., Djuraidah, A., & Saefuddin, A. (2015). Statistical downscaling to predict monthly rainfall using linear regression with L1 regularization (LASSO). Applied Mathematical Sciences, 9(108): 5361–5369.
Wigena, A. H. (2011). Regresi kuadrat terkecil parsial multi respon untuk statistical downscaling (Multi response partial least square for statistical downscaling). Forum Statistika dan Komputasi, 16(2):12-15.