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Abstract 

Poisson regression is often used to model count data. However, it requires the assumption of 

equidispersion which not always met in the real application data. Quasi-Poisson can be 

considered as an alternative to handle this problem. The objective of this essay is to explain 

about the Quasi-Poisson regression, the likelihood construction, parameter estimation, and its 

implementation in real life data. The numerical method used in this study is Newton-Raphson 

which is equivalent to Iterative Weighted Least Square (IWLS) at the end of calculation. The 

simulation results for the data with the above problem showed that, in case of overdispersion, 

Quasi-Poisson regression with Maximum Quasi-Likelihood method provided a good fit to the 

data compared to Poisson regression. 

Keywords: Iterative weighted least square, Newton Raphson, overdispersion, quasi-likelihood, 

quasi-Poisson.  
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Introduction 

Poisson regression is often used when the response variable contains count data. In 

application, Poisson regression has several assumptions that must be fulfilled. One of the 

Poisson regression assumption is equidispersion where mean response variable and its variance 

are equal. However, in practice, overdispersion is more common than equidispersion 

(McCullagh and Nelder, 1989). Unobserved heterogeneity is one of the cases that leads to 

overdispersion, where variance exceed the mean (Cameron and Trivedi, 1998). Overdispersion 

data certainly requires special handling to be analyzed. 

Regression model that can handle overdispersion problem is Quasi-Poisson regression 

model (Ver Hoef and Boveng, 2007), where this model pays attention to the dispersion 

parameter which causes the data variance unequal to the mean. This model starts from 

parameter estimation called quasi-likelihood. In likelihood estimation, response variable should 

follow some distribution while quasi-likelihood estimation only requires the relationship 

between mean and variance from response variable. Moreover, quasi-Poisson regression model 

estimate the value of dispersion parameter while Poisson regression did not pay attention to the 

value of dispersion parameter. 

In terms of regression parameter estimation, quasi-Poisson model is very related to quasi-

likelihood. Quasi-likelihood function, which is the core of this study, has the same uses as 

likelihood function in maximum likelihood estimation (Wedderburn, 1974). However, there are 

prominent difference between this two parameters estimation that will be explained in the next 

section. Numerical method used for regression parameter estimation through quasi-likelihood 

is newton Raphson which equal to estimate the parameter with Iterative Weighted Least Square 

(IWLS) (Ver Hoef and Boveng, 2007). 

Data simulation will be done in terms of showing that quasi-Poisson model is better than 

Poisson model when the response variable is over dispersed count data. Regressor will be set 
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in two variables where the first regressor (𝑥1) represent the significant variable and the second 

regressor (𝑥2) represent the variable that not significant in modelling response variable. The 

value of standard error of regression parameter from quasi-Poisson regression will exceed the 

value of standard error of regression parameter from Poisson regression because of the 

parameter dispersion effect and it will affect the determination of significant variables. Data 

simulation is completed using the help of software RStudio 3.5.3 version (RStudio Team, 

2015). 

 

1. Materials and Methods 

Quasi-Poisson model formed by generalized linear models with Poisson-like assumption 

(Ver Hoef and Boveng, 2007). The response variable probability density function (pdf) in quasi-

Poisson model must be included in one parameter exponential family. Assumption of response 

variable is written as follows 

𝐸(𝑌)  = 𝜇, 

𝑉𝑎𝑟(𝑌) = 𝜙𝜇, 

where  𝜇 denote the mean response variable 𝑌 and 𝜙 denote the dispersion parameter which 

will be estimate from the data. This paper will define dispersion parameter value greater than 

one to state the overdispersion condition. 

 Likelihood function for quasi-Poisson (quasi-likelihood) does not require a specific 

probability density function to estimate regression parameter except for response variable 

assumption (McCullagh and Nelder, 1989). Formation of quasi-likelihood function begins with 

the same way as the usual likelihood function with the general pdf from exponential family 

(McCullagh and Nelder, 1989). Let 𝑌 be the response variable is part of one parameter 

exponential family, likelihood function of 𝑌 is 

𝐿(𝜃) = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑛|𝜽) = 𝑓(𝑦1|𝜽)𝑓(𝑦2|𝜽)…𝑓(𝑦𝑛|𝜽) 
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 = exp [∑ (
𝑦𝑖𝜃−𝐵(𝜃)

𝜙
+ 𝐶(𝑦𝑖, 𝜙))

𝑛
𝑖=1 ], 

then 

ln(𝐿(𝜃)) =∑(
𝑦𝑖𝜃 − 𝐵(𝜃)

𝜙
+ 𝐶(𝑦𝑖, 𝜙))

𝑛

𝑖=1

. 

From the exponential family, 𝜃 is canonical parameter which is a function of 𝜇 (𝜃 = 𝑔(𝜇)) and 

𝜇 is a function of 𝛽 (Agresti, 2013). Regression parameter 𝛽 is the parameter that will be 

estimated, therefore ln(𝐿(𝜃)) will derive toward 𝜇. 

𝜕 ln(𝐿(𝜃))

𝜕𝜇
=
𝜕
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1
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𝜕𝜇
)

𝑛

𝑖=1

], 

where 𝐵(𝜃) denote a function of 𝜃 and 𝜃 is a function of 𝜇. Consequently, chain rule will be 

used. 

         =
1
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]. 

Based on exponential family, 𝐵′(𝜃) = 𝜇 and 𝐵′′(𝜃)𝜙 = 𝑉(𝜇) = 𝑉𝑎𝑟(𝑌). 
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It is shown that to obtain derivative of log likelihood for one parameter exponential family 

response variable toward 𝜇 it only requires the relationship between mean and variance from 

response variable (Wedderburn, 1974). Hence, the form that used in parameter estimation 

without paying attention a specific pdf of variable called quasi-likelihood (Wedderburn, 1974). 

The following function represent the quasi-likelihood function for quasi-Poisson denote with 

𝑄(. , . ) (Wedderburn, 1974) 

𝜕𝑄(𝑦𝑖, 𝜇𝑖) 

𝜕𝜇𝑖
=
𝑦𝑖 − 𝜇𝑖
𝜙𝜇𝑖

, 

𝑄(𝑦𝑖, 𝜇𝑖) = ∫ (
𝑦𝑖 − 𝜇𝑖

∗

𝜙𝜇𝑖
∗ )

𝜇𝑖

𝑦𝑖

𝜕𝜇𝑖
∗. 

 Quasi-Poisson regression model is one of generalized linear model with link function 

log or log link which written as follows 

ln(𝜇) = 𝐱𝐓𝜷 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 

where 𝜇 represent mean response variable, 𝑥𝑗 denote regressor or predictor variable with 𝑗 =

1,2, … , 𝑝, and 𝛽𝑗 denote regression parameter. 

 Regression parameters from quasi-Poisson can be calculated using iterative weighted 

least square (IWLS) (Ver Hoef and Boveng, 2007).  The equation used in calculated the iterative 

weighted least square with 𝑘 + 1 iteration is written bellow (Ver Hoef and Boveng, 2007) 

�̂�[𝒌+𝟏] = (𝐗𝐓𝐖[𝐤]𝐗)
−𝟏
𝐗𝐓𝐖[𝐤]�̃�[𝒌] 

where  

𝑦�̃�
[𝑘] = 𝜂𝑖

[𝑘] + (𝑦𝑖 − 𝜇𝑖
[𝑘])

𝜕𝜂𝑖
[𝑘]

𝜕𝜇𝑖
[𝑘],  𝜂𝑖

[𝑘] = 𝐱𝐢
𝐓𝜷[𝑘],   𝜇𝑖

[𝑘] = 𝑔−1(𝜂𝑖
[𝑘]), 

and 𝐖[𝑘] denote the weight matrix which is diagonal matrix with diagonal elements 

𝑤𝑖
[𝑘] =

1

𝜇𝑖
[𝑘]
(
𝜕𝜇𝑖

[𝑘]

𝜕𝜂𝑖
[𝑘]
)

2

. 
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Simulation design 

Data used in simulation are from generated data with uniform distribution using R studio 

with glm package which will explained in next chapter.  Then the data will be analyzed with 

quasi-Poisson regression that already explained in previous chapter and Poisson regression 

model. The result from both model will be compared to obtain conclusion. 

In this paper, quasi-Poisson simulation aims to show that quasi-Poisson modelling 

overdispersed data better than Poisson regression. Data for explanatory variables, 𝑥1 and 𝑥2, 

were generated from uniform distribution, regression coefficients were set to 𝛽0 = 1.2, 𝛽1 =

1.7, 𝛽2 = 0 to accommodate that 𝑥1 as a significant variable and 𝑥2 as nonsignificant in terms 

of modelling 𝑦. Then the response variable, 𝑌 is obtained as 𝑌~𝑃𝑜𝑖(𝜆; 𝑑) where log(𝜆) = 𝑿𝜷 

and 𝑑 = 3 denote dispersion parameter. The last step is modelling with quasi-Poisson and 

Poisson regression then compare the standard error and p-value from both regressions.  

 

Results  

The fitted regression from the simulation is ln(𝜇) = 1.2 + 1.7𝑥1 + (7.804 ×

10−11)𝑥2, where the dispersion parameter for quasi-Poisson and Poisson are 3.032102 and 1 

based on the results of the program. 

Based on the result of the data simulation, there are prominent difference in the dispersion 

parameter comparing both regressions. The differences between quasi-Poisson and Poisson are 

presented in Table 1 that contains standard error and p-value from both regressions. 

Table 1.  Standard errors of quasi-Poisson regression and Poisson regression in simulation. 

Parameter 

Standard Error p-value 

Quasi-Poisson Poisson Quasi-Poisson Poisson 

Intercept 1.341e-08 7.702e-09 <2e-16 <2e-16 
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𝛽1 6.022e-10 3.458e-10 <2e-16 <2e-16 

𝛽2 6.060e-11 3.480e-11 0.198 <0.0249 

 

Table 1 shows that quasi-Poisson regression was able to model overdispersed data better 

than Poisson regression because quasi-Poisson consider 𝑥2 as a not significant (p-value > 0.05) 

variable while Poisson consider 𝑥2 as a significant variable (p-value < 0.05). 

 

Conclusion 

The simulation showed that quasi-Poisson regression fit the data better than Poisson 

regression in the case of over-dispersed data. Result and simulation conclude that quasi-Poisson 

regression model can overcome overdispersion problem with the appearance of dispersion 

parameter. 
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