
Proceeding of ICSA 2019, p: 143-154 

ISBN 978-979-19256-3-1 (PDF) 

 

143 

 

Bayesian Method for Hurdle Regression 

 

S S Hasanah1, S Abdullah2*, D Lestari3. 

1,2,3)Department of Mathematics, Universitas Indonesia, KampusBaru UI, Depok, 16424, Indonesia 

*)Corresponding author: sarini@sci.ui.ac.id 

 

Abstract 

 

Hurdle model is an alternative model to overcome overdispersion caused by excess zero. The   

model consists of  two stages: a binary process that determines whether the response variable 

has zero values or positive values, and the second stage to model only the positive counts. The 

first stage is modelled using binary logistic regression, and the next stage is modeled with the 

zero-truncated model using Poisson regression. Bayesian method was employed to estimate the 

models’ parameters. Non-informative priors were specified for the parameters, and combined 

with the likelihood from the data, the non-closed form of posterior distributions were obtained, 

thus leading to the use of Markov Chain Monte Carlo (MCMC) with Gibbs Sampling to obtain 

samples from the posterior distributions. This method was applied to model the frequency of 

motoric complication in people with Parkinson’s disease. The result showed that subtotal scores 

from the three parts of Movement Disorder Society-Unified Parkinson’s Disease Rating Scale 

(MDS-UPDRS) could explain the frequency of motoric complication well, implied by the 

significance of the regression coefficients.  
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Introduction 

Count data is an observation in the form of a frequency of an event, where the value is 

a non-negative integer. Poisson regression is used for the response variable in the form of count 

data. It assumes that the response variable has the same variance as the mean, known as 

equidispersion. However, in practice, the response variable has a greater variance than the 

mean, which is called over-dispersion. One of the causes of overdispersion is the number of 

zero values in the response, called excess zero (Winkelmann, 2008). Some examples of count 

data that have many zero values, i.e. the frequency of individuals infected by Escherichia coli 

(Jalava et al., 2011), frequency of cavities, caries, and broken teeth on a dental examination 

using the DMF index (Decayed, Missing, Filled) (Hofstetter et al., 2016), and frequency of 

cocoon population (Jenkinsetal, 2008).  

 

 

Mullahy (1986) introduced hurdle model that could be used to overcome overdispersion 

caused by excess zero. It was first developed for a count data context. Previously, the hurdle 

model was first developed by Cragg (1971) for problems in econometric, which deals with 

expenditure or consumption data. The modelling process is divided into two stages: a binary 

process that determines whether the response variable has a zero or a positive value through 

Figure 1. Hurdle model to overcome overdispersion problem in count data regression. 
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binary logistic regression, followed by the process for the positive count only through Poisson 

regression (Congdon, 2005).  

Bayesian approach will be used to estimate the model’s parameters. This is due to the 

flexibility of the Bayesian method, where the inference is conducted based on the posterior 

information, which contain a relatively more complete information than other method, i.e. the 

maximum likelihood method. Information from the posterior were formed by likelihood from 

data combined with the expert judgement through prior distribution; therefore, we prefer the 

Bayesian approach. Moreover, it was shown that the use of prior information in the Bayesian 

method is expected to increase accuracy in estimating population parameters (Congdon, 2005).  

 

Materials 

Data on people with early Parkinson’s disease taken from PPMI database was used to 

showcase hurdle model for this study (PPMI, 2018). Parkinson’s disease is a slow progressive 

degenerative condition of the central nervous system that affects body movements in daily life 

caused by a lack of dopamine in the brain (Jenkinsetal, 2008). It has two kinds of symptoms, 

which is affect movement (motoricsymptoms) and not affect movement (non-motoricsymptom) 

(DeMaagd et al., 2015). In general, motor symptoms consist of tremors, musclestiffness, and 

slow movements (bradykinesia), whilen on motor symptoms include sleep problems, anxiety, 

depression and fatigue (Hayes, 2019). 

Patients with Parkinson's disease undergo treatment to reduce Parkinson's symptoms 

and to prevent Parkinson's symptoms that appear so as not to become more severe. Some 

treatments that can be done include maintaining a healthy lifestyle, taking antiparkinsonian 

drugs; and undergo therapy. However, the drugs consumed also have side effects on motor of 

sufferers of Parkinson's disease, such as motor complications in patients with Parkinson's 

disease. Motor complications can occur after several years of treatment (APDA, 2017). 
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The variables used in Parkinson’s data were the results of measurements through the 

MDS-UPDRS instrument such as the total score of MDS-UPDRS Part4 (as the response 

variable) measuring the frequency of motor complications,  MDS-UPDRS Part 1 (X1) which is 

a test result of non-motor experiences in daily life, MDS-UPDRS Part 2 (X2) which is a test 

result of motor experiences in daily life, and MDS-UPDRS Part 3 (X3) which is assessment 

results from the motor sign of Parkinson’s disease. This study aims to find out what factors that 

might explain the frequency of motor complications in people with early Parkinson's disease. 

Data consists of observations from 300 patients. Among them, 126 observations (42%) 

were zero values, implying an excess zero problem, as shown in Figure 2. Therefore, analysis 

will be conducted separately for the zero counts and the positive counts, through the hurdle 

model. 

 
Figure 2. Histogram of number of motoric complications in people with early Parkinson’s 

disease. 

 

The hurdle model specifies two processes that generate zero and positive value. The 

first process is a determination whether observations are zero or positive. It can be modeled 

with a binary model. Furthermore, if the first process results in positive observations, then it 
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will be further analyzed in the second process. It only considers positive values so that 

observations that are zero will be truncated using a zero-truncated model (Tutz, 2012) 

Assumes that 𝑓1 and 𝑓2 are the probability density function (pdf) with support {0, 1, 2, 

…} where 𝑓1 is a pdf for the first process and 𝑓2 is a pdf for the second process on the model 

hurdle (Tutz, 2012). In this paper, 𝑓1 was derived from Bernoulli’s distribution and 𝑓2 was 

derived from Poisson’s distribution. 

Suppose the random variable 𝑌 is count data which states the number of events with 

non-negative integer values. In the first process, suppose 𝑆 is a binary variable that determines 

whether the observation is zero values or positive value 𝑆 = 0 means that the zero value is 

observed, while 𝑆 = 1 means that the positive values are observed (Congdon, 2005). So, the 

result of the binary process specified by 𝑓1 is as follows 

 Pr(𝑆 = 0) = Pr(𝑌 = 0) = 𝑓1(0) = 1 − 𝜋 

Pr(𝑆 = 1) = Pr(𝑌 > 0) = 1 − 𝑓1(0) = 𝜋 

(1)
(1)

 

If a positive value is resulted by the first process, then the observation with positive value is 

further analyzed in the second process by truncated at zero count model using 𝑓2 with the 

conditional distribution such that 

 
Pr(𝑌 = 𝑦|𝑦 > 0) =

Pr(𝑌 = 𝑦, 𝑦 > 0)

Pr (𝑦 > 0)
=

f2(𝑦)

1 − f2(0)
=

𝜆𝑦

(𝑒𝜆 − 1)𝑦!
, 𝑦 = 1,2, … 

(2) 

From this, there is a normalization which show by 1 − 𝑓2(0). It tells the truncation at zero of 

the models (Liu & Powers, 2012).  

With use the law of total probability, 

 Pr(𝑌 = 𝑦) = Pr(𝑆 = 0) Pr(𝑌 = 𝑦|𝑆 = 0) + Pr(𝑆 = 1) Pr(𝑌 = 𝑦|𝑆 = 1) (3) 

so, pdf for a hurdle model with 𝑓1 from Bernoulli and 𝑓2 from Poisson could be written as 

(Hilbe, 2014) 
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Pr(𝑌 = 𝑦) = {

1 − 𝜋             ,
0

𝜋
𝜆𝑦

(𝑒𝜆 − 1)𝑦!
,
 

𝑦 = 0
0

 

𝑦 > 0
0

 

 

                            

(4) 

where 0 < 𝜋 < 1 states the probability when the observation crossed zero (𝑌 > 0) dan 𝜆 > 0 

states the mean frequency of the event. 

Suppose 𝑌 is the response variable that describes how many occurrences of an 

observation value are non-negative integers. So, the equation of hurdle regression model can 

be written as follows  

 𝑙𝑜𝑔𝑖𝑡 (𝜋𝑖) = ln
𝜋𝑖

1 − 𝜋𝑖
=𝛼0 + 𝛼1𝑥𝑖1 + 𝛼2𝑥𝑖2 +⋯+ 𝛼𝑘𝑥𝑖𝑘 = 𝒙𝟏𝒊

𝑻 𝜶 
         (5)                      

and 

 ln(𝜆𝑖) =𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 = 𝒙𝟐𝒊
𝑻 𝜷 (6)                               

Where 𝜋 represent probability for the hurdle at zero is crossed, 𝜆 represent mean frequency of 

event, 𝛼 represent regression coefficient in model stage 1, 𝛽 represent regression coefficient in 

model stage 2, 𝑋1𝑗 represents the j-th predictor variable in model stage 1, 𝑗 = 1,2, … , 𝑘, and 

𝑋2𝑗 represent the l-thpredictor variable in model stage 2, 𝑙 = 1,2, … , 𝑝. 

 The set of explanatory variables for the model at both stages could be set different. In this 

paper, it is assumed that the model at both stages uses the same predictor variable, so 𝑘 = 𝑝.  

 

Method of Analysis 

The Bayesian approach assumes that parameters, for example, 𝜃, are random variables 

that have a certain distribution. Parameter estimation in Bayesian considering the prior 

information. Prior information will be updated after information from the sample is obtained. 

Both of them will be combined with Bayes theorem as follows (Gelman, 2014) 
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𝑝(𝜃|𝑦) =

𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
 

(7) 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝜃)𝑝(𝑦|𝜃) (8) 

where𝑝(𝜃)is prior distribution that states an information about 𝜃 before there is information 

from data, 𝑝(𝑦|𝜃)is a likelihood function that connects observations 𝑦 to 𝜃, 𝑝(𝜃|𝑦)is a posterior 

distribution that states information about 𝜃 after there is information from the data. Posterior 

distribution has an important role in Bayesian inference and then, 𝑝(𝑦) is a marginal likelihood. 

Suppose 𝑌 is a response, that is the total score of MDS-UPDRS part 4 consisting of 300 

observations, 𝑌𝑖 = 𝑦𝑖 where 𝑖 = 1,2, … ,300. Assume that each observation is mutually 

independent with 𝑖 = 1,2, … , 𝑛1 is the observation of zero counts and 𝑖 = (𝑛1 + 1),… , 300 is 

a positive count observation (Congdon, 2005). Thus, it can be obtained the likelihood function 

as follows. 

 

 
𝐿(𝛼, 𝛽) = [∏

1

1 + 𝑒𝑥1𝑖
𝑇 𝛼

300

𝑖=1

∏ 𝑒𝑥1𝑖
𝑇 𝛼

300

𝑖=𝑛1+1

] [∏
𝑒𝑥2𝑖

𝑇 𝛽𝑦𝑖

(𝑒𝑥2𝑖
𝑇 𝛽 − 1) 𝑦𝑖!

300

𝑖=1

] 

(9)                               

In this study, the frequency of motor complications in people with Parkinson’s disease, previous 

information about the parameters to be assessed (𝛼 and 𝛽) is not much known so that the prior 

chosen is non-informative prior. 

The prior is selected normal distribution with 𝜇𝛼 = 0 and 𝜎𝛼
2 = 10000 for the 𝛼 

parameter and similar is also done for the 𝛽 parameter (HAS, 2009). If the variances used are 

large enough, then the prior is used in the form of prior non-informative (Ntzoufras, 2009). 

Thus, the prior distribution for 𝛼 ∼ 𝑁(0,10000) and 𝛽 ∼ 𝑁(0,10000) are as follow 

 𝑝(𝛼, 𝛽) = 𝑝(𝛼)𝑝(𝛽) 𝐿(𝛼, 𝛽)𝐿(𝛼, 𝛽)𝑚                        𝐿(𝛼, 𝛽)𝐿(𝛼, 𝛽)𝐿(𝛼, 𝛽)𝐿(𝛼, 𝛽)  

 

𝑝(𝛼, 𝛽) = [∏
1

100√2𝜋
𝑒𝑥𝑝 (−

(𝛼𝑗)
2

2(10000)
)

3

𝑗=0

] [∏
1

100√2𝜋
𝑒𝑥𝑝 (−

(𝛽𝑗)
2

2(10000)
)

3

𝑗=0

] 

(10)                               
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Based on the likelihood function in equation (9) and the prior distribution in equation (10), the 

posterior distribution form is obtained as follows 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑝𝑟𝑖𝑜𝑟 𝑥 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝐿(𝛼, 𝛽)𝑚                        𝐿(𝛼, 𝛽)𝐿(𝛼, 𝛽)(𝛼, 𝛽)  

     𝑝(𝛼, 𝛽) ∝ [∏
1

100√2𝜋
𝑒𝑥𝑝(−

(𝛼𝑗)
2

2(10000)
)

3

𝑗=0

] [∏
1

100√2𝜋
𝑒𝑥𝑝 (−

(𝛽𝑗)
2

2(10000)
)

3

𝑗=0

] 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥 [∏
1

1 + 𝑒𝑥1𝑖
𝑇 𝛼

300

𝑖=1

∏ 𝑒𝑥1𝑖
𝑇 𝛼

300

𝑖=𝑛1+1

] [∏
𝑒𝑥2𝑖

𝑇 𝛽𝑦𝑖

(𝑒𝑥2𝑖
𝑇 𝛽 − 1) 𝑦𝑖!

300

𝑖=1

] 

(11) 

The posterior distribution in equation (11) is used to estimate the values of the parameter 𝛼 and 

𝛽. However, the result of the posterior distribution is not closed-form so it is difficult to 

calculate manually and computational techniques are needed to estimate the parameter values 

𝛼 and 𝛽 from the posterior distribution. 

 

Results and Discussion 

Since the posterior distribution of the parameters of interest is in a non-closed form, 

numerical simulation using Markov Chain Monte Carlo (MCMC) was conducted. Applying the 

Gibbs sampling using JAGS (Su & Yajima, 2015) accessed through R (R Core Team, 2019), 

after 10.000 iterations as burn-in, the next 100.000 iterations were taken as the posterior 

samples for each parameter. Summary of the resultsare shown in Table 1. 

Table 1. The results of parameter estimates with Bayesian method 

Parameter Mean Standard

Deviance 

2.5 

Percentile 

Median 97.5 

Percentile 

𝛼0 0.00204 0.00997 -0.00471 0.00203 0.00872 

𝛼1 0.02058 0.00915 0.01435 0.02060 0.02681 

𝛼2 0.01463 0.00844 0.00890 0.00890 0.02034 

𝛼3 0.01435 0.00434 0.01141 0.01434 0.01727 

𝛽0 0.00909 0.01001 0.00231 0.00910 0.01582 

𝛽1 0.02730 0.00714 0.02248 0.02726 0.03208 
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𝛽2 0.01734 0.00550 0.01364 0.01733 0.02106 

𝛽3 0.02678 0.00234 0.02521 0.02684 0.02838 

 

The parameterswhich the 95% credible interval that do not contain zero values could be 

signed as the significant parameters (Liu & Powers, 2012). From Table 1, the significant 

parameters are 𝛼1,𝛼2, 𝛼3, 𝛽1, 𝛽2, and 𝛽3. It means, all of the explanatory variables 

(𝑋1, 𝑋2, 𝑋3) could significantly explain whether patients experienced motor complications of 

Parkinson's disease, and when they do, how many complications would likely to take place. 

The model fit for logistic and Poisson regression are 

 𝑙𝑜𝑔𝑖𝑡 𝜋 = ln
𝜋

1 − 𝜋
=  0.002014 +  0.02058𝑋11 + 0.01463𝑋12 + 0.01435𝑋13 

(13) 

 ln 𝜆 =0.00909 +  0.02730𝑋21 + 0.01734𝑋22 + 0.02678𝑋23 (14)                               

From equation (13) and (14), it can be seen that all the predictor variables have positive 

signs. It means, all of these associates positively to 𝑙𝑜𝑔𝑖𝑡 (𝜋) and ln(𝜋). That is, the greater the 

value of variables 𝑋11, the probability of patients with Parkinson’s disease who has experience 

in motor complications is increasing. The same inference also applies to variable 𝑋13 and 𝑋13. 

Moreover, the greater value of variables𝑋21, the frequency of motor complications experienced 

by patients with Parkinson's disease is also increasing, as well as for 𝑋22 and 𝑋23. 

Evaluation of the convergence of model parameters were conducted through the density 

plots, as depicted in Figure 3. It shows the full posterior distributions of the estimated parameter 

from the hurdle regression with their predictor variables. Unimodality of the distribution 

implies the convergence of parameters.  
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Figure 3. Posterior density plot of 𝛼 (left column)- the regression coefficient for the 1st stage 

model- and 𝛽 (right column)- the regression coefficient for the 2nd stage model. 

  

Conclusions 

In this study, hurdle model could successfully fit count data with overdispersion due to 

excess zeros, as shown by the convergence of the posterior estimates of regression parameters. 

MDS-UPDRS in both stages of hurdle regression was associated significantly with MDS-

UPDRS Part 1; Part 2, and Part 3, showing the importance of the MDS-UPDRS in explaining 

the severity of Parkinson’s disease, where severity in this study is represented by the frequency 

of motoric complications in people with Parkinson’s disease. For future research, other 

measurements in addition to the MDS-UPDRS would benefit the study to obtain more 

comprehensive explanation on the motoric complications. 
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