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Abstract 

Cox PH model is one of the survival models that is widely used for analyzing time-to-event 

data. Cox PH model consists of two main components, the baseline hazard consisting of time-

dependent component; and the exponential function accomodating explanatory variables. The 

baseline hazard is not estimated in the Cox PH model, thus not accommodating the need for 

hazard rate estimation. Therefore, in this paper we discuss the estimation of baseline hazard 

through piecewise constant hazard using Bayesian method. Gamma distribution is assumed for 

the piecewise constant baseline hazard, and normal distribution is assumed for the regression 

coefficient. Sampling from the posterior is conducted using Markov chain Monte Carlo through 

Gibbs sampling.  Echocardiogram data containing 106 observations and 6 explanatory variables 

were used in analysis. The result showed that the baseline hazard functions were estimated and 

each of parameters in the model is converged as shown by the trace plot and posterior density 

plot.  

Keywords: Bayesian method, Cox regression, Gibbs sampling, Markov chain Monte Carlo, 

survival analysis.  

  

 

mailto:sarini@sci.ui.ac.id


Proceeding of ICSA 2019, p: 83-95 

ISBN 978-979-19256-3-1 (PDF) 

 

84 

 

Introduction 

Survival analysis is a method to analyze time-to-event data. Normally, time-to-event data 

associate with additional information (explanatory variables). In analyzing time-to-event data, 

probability of survive or failure risk of  subject to experience the event of interest would be the 

focus of study. Time-to-event data modelling is needed in order to know the subject’s survival 

probability or failure risk with corresponding to the explanatory variables.  

One of the most widely used model in analyzing time-to-event data correspond to the 

explanatory variables is Cox model (Guo and Zeng, 2013). By using Cox model, hazard (failure 

risk) corresponding to the explanatory variables can be estimated. Cox model has two main 

components, baseline hazard and exponential function that includes regression coefficient. In 

this model, the baseline hazard does not have any assumption (Klein and Moeschberger, 2003). 

Therefore, in order to determine subject’s hazard specifically, this baseline hazard should be 

specified.  

In this paper, the baseline hazard is assumed to be piecewise constant. By assuming 

piecewise constant for the baseline hazard, we have a model called piecewise constant hazard 

model. By using piecewise constant hazard model, hazard of each subject can be determined 

specifically. Afterward, Bayesian method is employed to estimate parameters in piecewise 

constant hazard model in which sample of parameters will be obtained using Markov chain 

Monte Carlo through Gibbs sampling. The construction of piecewise constant hazard model 

will be explained and the model will be applied to real data. Echocardiogram data from 

Universitify of California, Irvine (UCI) consist of 106 observation and 6 explanatory variables 

are used in analysis. The six variables consist of age, pericardial-effusion, fractional-shortening, 

EPSS, LVDD and wall-motion-index. Afterward, convergence checking of all parameters in 

the model is conducted. Parameters convergence can be seen through trace plot and density plot 

of model diagnostics. The result shows that all of parameters in the model is converge and 
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therefore the estimated value of parameters will be used to determine hazard of a subject 

specifically. 

 David Cox made a breaktrough with his research titled Regression Models and Life-

Tables in 1972. This research focus on modelling time-to-event data with considering the 

explanatory variables in order to estimate hazard. This research considered to use censored 

failure times and assumed that each individual has values on explanatory variables. Cox model 

defined hazard as a product of an unknown function of time and exponential function that 

includes regression coefficient. The research also include an explanation about conditional 

likelihood that leading to inferences about the regression coefficients. This procedure of 

conditional likelihood does not need the specification of function of time in Cox model, made 

the model flexible and easy to use. 

However, the drawback of this method is that Cox PH model can only be used to 

estimate hazard ratio. Without knowing about the unkown function of time in this model, 

spesific hazard of each individual can not be estimated. For this purpose, the unknown function 

of time should be assumed to have a spesific form or function. This purpose can lead to other 

research that can be done by making assumption regarding the unknown function of time.  

 

Materials  

 Piecewise constant hazard model is obtained from the piecewise constant assumption 

for the baseline hazard in Cox PH model. Cox PH model consist of two components, baseline 

hazard which is just based on time and exponential function that includes regression coefficient 

in which this expoential function just based on explanatory variables. In Cox PH model, the 

baseline hazard does not have any assumption. Therefore, we can not determine a subject’s 

hazard because we have unknown component in this model.  
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Cox PH model is defined as follow. Assumed 𝑇 is survival-time and each subject has 𝑝 

explanatory variables with 𝒁𝑡 = [𝑍1, 𝑍2, … . , 𝑍𝑝]. Then, hazard of a subject based on their 

explanatory variables defined as : 

ℎ(𝑡|𝒁) =  ℎ0(𝑡). 𝑒
(𝜷𝒕𝒁)  (1) 

(Cox,1972) 

In Cox model, ℎ0(𝑡) defined as baseline hazard in which when the explanatory 

varaiables assumed have values of zero or when the explanatory variables are not considered in 

the model. Then, 𝜷𝑡 = [𝛽1, 𝛽2, … . , 𝛽𝑝] is a vector of regression coefficient, expressing the 

effects of explanatory variables and 𝒁𝑡 = [𝑍1, 𝑍2, … . , 𝑍𝑝] is a vector of explanatory variables 

corresponded to the subject. By Cox model, hazard of a subject based on their explanatory 

variables defined as the product of baseline hazard and an exponential function which contain 

regression coeffients. In order to dertermine hazard, both the baseline hazard and regression 

coefficient in this model need to be estimated. In this paper, parameter estimation is done by 

Bayesian method through Markov chain Monte Carlo and Gibbs sampling. 

In Bayesian method, parameters of interest is treated as random variables. Bayesian 

method use the information of observed data, in the form of likelihood function and the 

information of historical data or historical information about parameter of interest in the form 

of prior distribution. Then, the parameters of interest can be obtained from posterior 

distribution.  

Let 𝜃 denotes the parameter of interest and D is observed data. Assumed that 𝜃 has prior 

distribution denoted by 𝜋(𝜃). Estimated parameter in Bayesian method will be obtained from 

posterior distribution, denoted by 𝜋(𝜃|𝐷) (Ibrahim, Chen and Sinha, 2011). Posterior 

distribution is given by: 

𝜋(𝜃|𝐷) =  
 𝜋(𝐷| 𝜃).𝜋(𝜃)

∫  𝜋(𝐷| 𝜃).𝜋(𝜃) 𝑑𝜃
 
𝜃

 (2) 
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where 𝜋(𝐷| 𝜃) is likelihood from observed data. The denominator of posterior 

distribution called normalization constant. If the value is known, it is just a constant that made 

posterior distribution has pdf property. Therefore, posterior distribution can be written in 

proportional form as the product of likelihood and prior (Ibrahim, Chen and Sinha,2011) as 

follow : 

  𝜋(𝜃|𝐷)  ∝  𝜋(𝐷| 𝜃). 𝜋(𝜃) (3) 

 

Posterior distribution can take one of this two forms, closed form and non-closed form. 

The estimated parameter can be obtained directly from closed form posterior while in the non-

closed form posterior, samples of parameter will be obtained with through Markov chain Monte 

Carlo method (Hoff,2009). In this paper, Markov chain Monte Carlo method with Gibbs 

sampling alghorithm will be used as the obtained posterior distribution take on a non-closed 

form. Therefore, parameter estimation of piecewise constant hazard model is conducted with 

Markov chain Monte Carlo and Gibbs sampling. In piecewise constant hazard model, there are 

two parameters that need to be estimated, baseline hazard in the form of piecewise constant and 

regression coefficient.  

 In piecewise constant hazard model, time axis is divided into several interval in which 

every interval has its own baseline hazard in the form of a constant. Then, subjects in study is 

divided based on their survival time into one of these intervals. Therefore, each individu has 

baseline hazard based on the interval they belong to. In piecewise constant hazard model, hazard 

of a subject is defined as the product of a constant and exponential function that includes 

regression coefficient. In this paper, it is assumed that explanatory variables are time-

independent and each parameter in the model is disjoint.  

Assumed that random variable 𝑇 denotes survival time and each subject has 𝑝 

explanatory variables denoted by 𝒁𝑡 = [𝑍1, 𝑍2, … . , 𝑍𝑝]. Assumed that baseline hazard in Cox 
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model is constant, which denoted by ℎ0(𝑡) =  λ. Then, assumed D is observed data with n 

subjects and p explanatory variables. Piecewise constant hazard model defined as : 

  ℎ𝑖𝑗(𝑡|𝒁) =  λ𝑗 . 𝑒
(𝜷𝒕𝒁)                 𝑖 = 1,2, … , 𝑛,     𝑗 = 1,2, … . , 𝐽. (4) 

(Ibrahim, Chen and Sinha,2011) 

The time axis is made into finite partition where 0 < 𝑆1 <  𝑆2 < ⋯ < 𝑆𝐽 with 𝑆𝐽 > 𝑦𝑖 

for all 𝑖 = 1,2, … , 𝑛 where 𝑦𝑖 is the survival time of the subject. In Equation (4), the survival 

time lies in between interval 𝑆𝑗−1 and interval 𝑆𝑗 or denoted as t ∈ (𝑆𝑗−1, 𝑆𝑗]. The notation 𝑖 =

1,2, … , 𝑛 denotes subjects in the study and 𝑗 = 1,2, … , 𝐽 denotes the interval. In order to 

determine the hazard, both constant and regression coefficient need to be estimated. Once the 

constant and regression coefficient are estimated, the hazard of each subject can be determined. 

In order to do this, we need the component likelihood function and prior distribution in order 

to get posterior distribution. 

 In this paper, the assumption of censored type I of time-to-event data is used to 

construct likelihood function based on piecewise constant hazard model. When the subject’s 

survival time is known, the value of 𝑦𝑖 will be 𝑡𝑖 and when the subject is censored the value of 

𝑦𝑖 will be 𝑐𝑖. Mathematically, it can be written as : 

 𝑦 = min (𝑡, 𝑐) (5) 

 

In order to construct likelihood for this model, the pdf and survival function of this 

model is needed. For piecewise constant hazard model, survival function defined as : 

 
𝑆(𝑡|𝒁) =  𝑒−[𝜆𝑗(𝑦𝑖−𝑠𝑗−1)+ 

∑ 𝜆𝑔(𝑆𝑔−𝑠𝑔−1)]
𝑗−1
𝑔=1 .𝑒(𝜷

𝒕𝒁)

 (6) 

and the pdf has the form: 

 
𝑓(𝑡|𝒁) = [λ𝑗. 𝑒

(𝜷𝒕𝒁)]. [𝑒−[𝜆𝑗(𝑦𝑖−𝑠𝑗−1)+ 
∑ 𝜆𝑔(𝑆𝑔−𝑠𝑔−1)]
𝑗−1
𝑔=1 .𝑒(𝜷

𝒕𝒁)

] (7) 
 

 

Then, defined random variable 𝑣 that denotes status of the subject and random variable 

𝛿𝑖𝑗 denotes status of the subject per interval, defined as follow : 
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 𝑣 = {0,if the subject is censored (𝑡>𝑐)
1,if the subject survival time is observed (𝑡≤𝑐) 

 (8) 
 

 

 𝛿𝑖𝑗 = {0,others
1,if the subject experience the event or censored in 𝑗−𝑡ℎ interval

 (9) 
 

 

By using these forms of pdf, survival function and assumption that observed data has 

censored Type I observation, likelihood function for piecewise constant hazard model defined 

as follow : 

 
L(𝛃, 𝛌|D)  =∏∏

[ℎ0(𝑦𝑖). 𝑒
(𝜷𝒕𝒁)]

𝛿𝑖𝑗𝑣𝑖
.

[𝑒−𝛿𝑖𝑗[𝜆𝑗(𝑦𝑖−𝑠𝑗−1)+ 
∑ 𝜆𝑔(𝑆𝑔−𝑠𝑔−1)]
𝑗−1
𝑔=1 .𝑒(𝜷

𝒕𝒁)
]

𝐽

𝑗=1

𝑛

𝑖=1

 

 

(10) 

 

After having the form of likelihood function for piecewise constant hazard model, the 

prior distribution should be specified for each parameter in the model. If 𝜃 denotes parameter, 

then in piecewise constant hazard model we have 𝜽𝑡 = (𝜷, 𝛌) where 𝜷𝑡 = [𝛽1, 𝛽2, … . , 𝛽𝑝] and 

𝛌𝑡 = [λ1, λ2, … . , λ𝐽]. In this paper, it is assumed for each of  𝛽𝑖 for 𝑖 = 1,2, … , 𝑝 will be 

following normal distribustion with 𝜇 = 0 and 𝜎2 = 106. Assumed that for each β is disjoint, 

prior distribution for parameter β is : 

 π(β) = (
1

𝜎 √2𝜋
)𝑝exp{- 

(∑ β𝑖
2−2μ ∑ β𝑖

𝑝
𝑖=1 + ∑ (μ )

2𝑝
𝑖=1

𝑝
𝑖=1

(2𝜎 
2) 

 

}  ,(-∞ < β𝑖 < ∞) ,      i=1,2,...p (11) 

 

Subsequently, for each 𝑗 = 1, 2,3, … . , 𝐽, it is assumed that each of parameter λ will be 

following gamma distribution with 𝛼 = 10−4 and 𝛾 =  10−4. Assumed that for each λ is 

disjoint, prior distribution for parameter λ is : 

 π(𝛌) = 
(𝛾𝛼)𝑝

(Г(𝛼))𝑝
∏ (λ𝑗)
𝐽
𝑗=1

𝛼−1
𝑒
−𝛾(∑ λ𝑗)

𝐽
𝑗=1 ,  α > 0, γ>0, 0 < λ𝑗< ∞, 𝑗 = 1,2,3, … , 𝐽 

 
(12) 

 

After having the likelihood function and prior distribution for all parameters, by using 

the proportional form, posterior distribution for piecewise constant hazard model defined as : 
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 π(β,λ |D) ∝ ∏ ∏ λ𝑗 . 𝑒
(𝜷𝒕𝒁)]𝛿𝑖𝑗𝑣𝑖 . [𝑒−𝛿𝑖𝑗[𝜆𝑗(𝑦𝑖−𝑠𝑗−1)+ 

∑ 𝜆𝑗(𝑆𝑔−𝑠𝑔−1)]
𝑗−1
𝑔=1 .𝑒(𝜷

𝒕𝒁)

]𝐽
𝑗=1

𝑛
𝑖=1 . 

(
1

𝜎 √2𝜋
)𝑝exp{- 

(∑ β𝑖
2−2μ ∑ β𝑖

𝑝
𝑖=1 + ∑ (μ )

2𝑝
𝑖=1

𝑝
𝑖=1

(2𝜎 
2) 

 

}.
(𝛾𝛼)𝑝

(Г(𝛼))𝑝
∏ (λ𝑗)
𝐽
𝑗=1

𝛼−1
𝑒
−𝛾(∑ λ𝑗)

𝐽
𝑗=1  

 

(13) 

(Ibrahim, Chen and Sinha, 2011) 

 

 The posterior distribution above has a non-closed form. Therefore, estimated parameter 

can not be obtained directly and will be conducted by Markov chain Monte Carlo through Gibbs 

sampling. In Markov chain Monte Carlo, the samples of parameter are drawn using iteration 

which have limiting distribution to posterior distribution of interest. Model diagnostics using 

trace plot and density plot can show the convergence of the parameters of interest (Hoff,2009).  

 

Method of Analysis 

In this paper, piecewise constant hazard model is applied to echocardiogram data 

(UCI,1989). The data consists of 106 observations and 6 explanatory variable which are age, 

pericardial-effusion, fractional-shortening, EPSS, LVDD and wall-motion index . The subjects 

in the study are patients who had heart attack in the past. The event of interest in this study is 

the death of the patient because of the heart attack. The start of the study is from the last time 

the patient had heart attack in the past.  

The procedure of data analysis is done as follow. 

1. Define all the variables for the model based on the data. 

2. Define model equation based on the parameters for echocardiogram data. 

3. Determine number of iterations. In this study, the total number of iteration is 

300.000, in order to get convergence for all parameters  

4. Determine number of intervals for the model. This study use eight interval for the 

piecewise constant baseline hazard. 

5. Determine prior distributions for each parameter in the model. Hyperparameter for 

prior also determined in this step. This study assume that prior distribution for 
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regression coefficients follow Normal(0,106) and for the piecewise constant 

baseline hazard will follow Gamma(10−4, 10−4). 

6. After all of the components are set, run the procedure.  

7. Do convergence check for all parameters in the model by using trace plot and density 

plot. 

8. If all the parameter hasn’t converged, add number of iterations and re-run the 

procedure. 

9. Procedure will stop if each of parameters in the model is converged. 

After the procedure is done, the last step to do is to check the estimated value for the 

baseline hazards and regression coefficients in the model. After all the estimated parameter is 

obtained, the hazard of a specific subject can be determined.  

 

Results and Discussion 

Before the estimated parameter can be used in the model, parameter convergence should 

be checked first. In this paper, trace plot and density plot will be used as convergence diagnostic. 

For parameter β, the estimated parameter has converged if the trace plot and density plot has 

form as follow : 

 

Figure1. Trace plot and density plot that shows the 𝛽 parameter has converged 

Subsequently for parameter λ, the trace plot and density plot should have form as follow : 
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Figure2. Trace plot and density plot that shows parameter λ has converged 

The result of analysis in this paper, all of the parameters has similar result of trace plot 

and density plot as the figures above. Therefore, all of the parameters have converged.  In the 

output result, the obtained estimated parameter are as follow : 

     Table1. Estimated λ.     Table2. Estimated 𝛽. 

      

 

 

 

 

 

 

      

Because all of estimated parameters have converged, the estimated parameter can now 

be used to determine hazard. The hazard of each subject can now be determined. For instance, 

the subject of interest is subject number 60 who has information as follow : 

Table 3. Information regarding subject number 60. 

 

    The subject died (censor=1), 22 months since the last time the subject had a heart attack 

(y=22) and based on Table 2, the survival time lies in the 2nd interval. Because this subject’s 

survival time lies in interval 2, the value of baseline hazard will follow the value of λ2.  By 

using the infomation of  explanatory variables, hazard of subject number 60 is : 

ℎ60,2(𝑡|𝒁) =  λ2. 𝑒
(𝜷𝒕𝒁)   

          = (0.102).(𝑒(−0.015)(57)+(0.017)(0)+⋯.+(−0.00006)(1.36)) 

 = (0.102).(0.45) 

   = 0.046 
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In the result above, the hazard of a subject can now determined specifically using 

piecewise constant hazard model based on their survival time and their corresponding 

explanatory variables. For instance above, the hazard of subject number 60 who died at the 22 

months since the last time the subject had an heard attack is 0.046. 

Cox model does not have any assumption regarding the baseline hazard. In order to 

determined hazard of each subject specifically, the baseline hazard need to be specified. 

Research regarding piecewise constant hazard moodel are still few. Research regarding 

piecewise constant hazard model is mostly applied to health and medicine data. However, the 

use of this model is not restricted only in that area. This model can be applied to other field 

such as economics or engineering. In this paper, model diagnostics for convergence of 

parameters had been discussed. This paper use trace plot and density plot to help determine the 

convergence of sampled parameter.  

 

Conclusion and Future Research 

In Cox model, specifying assumption for the baseline hazard can help to determine 

hazard per subject specifically. One of the approaches is to make a piecewise constant 

assumption for the baseline hazard in Cox model. By specifying this assumption, piecewise 

constant hazard model is obtained. In order to know the hazard of a subject, the  constant 

(baseline hazard) and regression coefficient in Cox model need to be estimated. Bayesian 

method is employed to estimate parameters in the model with the help of Markov chain Monte 

Carlo through Gibbs sampling. The result showed that all of parameters is converge via 

diagnostics from trace plot and density plot for each parameters.  

 In this paper, assumption of censored type I is used. However, other types of time-to-

event data can still be analyzed using piecewise constant hazard model. In this paper, the 

piecewise constant assumption is used for the baseline hazard. However, there are any other 
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varieties of assumption that can be made for baseline hazard assumption, such as gamma 

process, correlated gamma proces, beta process or Dirichlet process. Model diagnostics also 

not restricted by using only just trace plot or density plot. The other diagnostics also can be 

used to determine sampled parameters convergence such as autocorrelation plot, Geweke-Test 

or Gelman-Rubin test. 
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