Master Curriculum

Master Curriculum

Structure Overview

Course CategoriesNumber of CoursesCredits
Common Core Course (CCC)13
Academic Core Courses (ACC)412
In-Depth Prodi Course (IDC)39
Enrichment Courses (EC)10-3
Final Year Projects (FYP)*)614
Total Credits38

Semester 1

NoCourse CodeCourse NameCreditsCourse CategoryPrerequisite
1STA1511Statistical Analysis3(2-1)ACC
2STA1501Statistical Theory3(2-1)ACC
3STA1561Statistical Programming3(2-1)ACC
4STA1581Data Science3(2-1)ACC
Total Credits12

Semester 2

NoCourse CodeCourse NameCreditsCourse CategoryPrerequisite
1STA1500Quantitative Research Methods3(2-1)CCC
2STA169AThesis Proposal2(0-2)FYP
Specialization Courses: Statistical Modeling
3Choose at least one
STA1521Design and Analysis of Experiments3(2-1)IDC
STA1522Sampling Methods3(2-1)IDC
4STA1541Analisis Peubah Ganda3(2-1)IDC
Specialization Courses: Predictive Analytics
3Choose at least one
STA1521Design and Analysis of Experiments3(2-1)IDC
STA1522Sampling Methods3(2-1)IDC
4Choose at least one
STA1542Time Series Analysis3(2-1)IDC
STA1543Categorical Data Analysis3(2-1)IDC
Specialization Courses: Big Data Analytics
3STA1562Statistical Data Management3(2-1)IDC
4STA1582Statistical Machine Learning3(2-1)IDC

Semester 3

NoCourse CodeCourse NameCreditsCourse CategoryPrerequisite
1STA1697ColloqiumFYPCCC
Specialization Courses: Statistical Modeling
2STA1631Generalized Linear Model3(2-1)IDC
Specialization Courses: Predictive Analytics
2STA1551Classification Modeling3(2-1)IDC
Specialization Courses: Big Data Analytics
2STA1563Data Exploration and Visualization3(2-1)IDC

Semester 4

NoCourse CodeCourse NameCreditsCourse CategoryPrerequisite
1Choose at least one
PPS1692National Publication2(0-2)FYP
PPS1695International Publication3(0-3)FYP
PPS1698Publication in International Seminar Proceedings 2(0-2)FYP
2PPS1691Thesis Seminar1(0-1)FYP
3STA169BThesis6(0-6)FYP
4STA169CThesis Examination2(0-2)FYP
Total Credits16

Capaian Pembelajaran Program Studi

Category Code Learning Outcome
Sikap AT Memiliki kemandirian intelektual dalam berpikir kritis sebagai pembelajar sepanjang hayat.
Pengetahuan K1 Memiliki pemahaman mendalam mengenai konsep dan teori statistika dan sains data yang mendasari aplikasi analisis data dan pengembangan keilmuan tingkat lanjut.
K2 Memiliki pengetahuan algoritmik mendalam tentang pengelolaan data dan pemrograman yang mendukung analisis statistika/sains data secara lebih customized dan efisien.
K3 Memiliki pemahaman mendalam tentang  teknik pengumpulan data melalui percontohan atau percobaan atau akuisisi data.
K4 Memiliki pengetahuan yang luas mengenai pemodelan statistika/sains data baik yang bersifat supervised maupun unsupervised learning, serta penyajian yang baik.
Keterampilan A1 Memiliki kemampuan merancang proses pengumpulan data dan mengelola implementasinya dalam bentuk survei kompleks atau percobaan tingkat lanjut atau akuisisi data dari berbagai sumber database yang mendukung penyelesaian masalah nyata.
A2 Memiliki kemampuan menyusun strategi analisis data dan mengaplikasikannya menggunakan teknik statistika atau statistical machine learning dengan bantuan komputer.
A3 Memiliki kemampuan kontekstualisasi hasil analisis dan pemodelan statistika dan sains data sebagai pendukung pengambilan keputusan.
Kompetensi C1 Memiliki kemampuan memformulasikan permasalahan nyata ke dalam permasalahan statistika dan sains data sehingga diperoleh solusi yang mampu dipahami oleh pemangku kepentingan sesuai bidang kajian.
C2 Memiliki kemampuan mengevaluasi efektifitas proses pengumpulan data yang relevan dengan pencarian solusi bagi penyelesaian masalah terapan,  terutama dalam bidang pertanian tropika dan kemaritiman, baik melalui survei atau percobaan atau pemanfaatan database atau pengumpulan data digital.
C3 Memiliki kemampuan mengelola tim analisis data yang menggunakan teknik statistika atau machine learning lanjut.
C4 Memiliki kemampuan mengartikulasikan hasil analisis data dalam bentuk komunikasi yang efektif dengan pemangku kepentingan, baik secara lisan maupun tertulis.


Program Learning Outcomes

Category Code Learning Outcome
Attitude AT Demonstrate critical thinking and intellectual independence as a lifelong learner.
Knowledge K1 Master core concepts and theories in statistics and data science that support advanced data analysis and scientific development.
K2 Possess strong algorithmic and programming knowledge for efficient, customized statistical/data analysis.
K3 Understand key methods of data collection, including sampling, experimentation, and data acquisition.
K4 Demonstrate broad knowledge of modeling techniques, including supervised and unsupervised learning, and effective data presentation.
Skills A1 Design and implement data collection processes for complex surveys, experiments, or multi-source data acquisition.
A2 Develop and execute data analysis strategies using statistical or machine learning techniques and computational tools.
A3 Interpret and contextualize analysis results to support informed decision-making.
Competence C1 Formulate real-world problems into statistical/data science frameworks to deliver stakeholder-relevant solutions.
C2 Evaluate data collection processes to support applied solutions, particularly in tropical agriculture and maritime domains.
C3 Lead data analysis teams utilizing advanced statistical or machine learning methods.
C4 Communicate analytical findings effectively to stakeholders, both orally and in writing.
Select the fields to be shown. Others will be hidden. Drag and drop to rearrange the order.
  • Image
  • SKU
  • Rating
  • Price
  • Stock
  • Availability
  • Add to cart
  • Description
  • Content
  • Weight
  • Dimensions
  • Additional information
Click outside to hide the comparison bar
Compare